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Abstract

This paper provides the first experimental evidence that information re-
ceivers consider the size of the signal space, which represents the number of
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values of lotteries they played (Study 2) in varying sizes of the signal space.
Results show that the size of the signal space was positively correlated with the
elicited value of the signals, but not the value of the equivalent lotteries. These
experimental findings cannot be explained by leading theoretical frameworks.
In general, preference for a larger signal space suggests users find a five-star
rating system more attractive than a binary recommendation system.
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1 Introduction

Signal transmission is an essential part of the literature on game theory, in which a

vast amount of theoretical and empirical research has been conducted. However, the

desirable size of the signal space has often been overlooked in the literature. In the

context of information acquisition, the size of the signal space denotes the number of

possible signals. In many cases, theorists have assumed that the signal space equals

the action space when discussing the size of the signal space (Spence, 1973; Kamenica

and Gentzkow, 2011). They have shown that assuming an equivalence between the

signal space and the action space is sufficient to find the equilibrium, making a larger

signal space unnecessary. This assumption has been taken for granted, but its validity

and implications of models relying on this assumption could be limited if the receiver

prefers a larger signal space. This paper investigates whether individuals have a

preference for the size of the signal space, independent of signal accuracy.

Consider the example of an investor contemplating whether or not to invest in

a company. State θ ∈ {G,B} represents the type of the company, where G and B

stand for a good company and a bad company, respectively. The investor does not

know whether the company is good or bad, but she thinks the probability that the

company is good is 0.5. She wants to invest only if the company is good. Without

loss of generality, suppose she receives a utility of 1 for investing in the good company

or for not investing in the bad company, and a utility of 0 for investing in the bad

company or for not investing in the good company.1

To reduce uncertainty about the investment decision, she is considering hiring

a financial advisor with more knowledge of the company. There are two advisors

she is considering: Advisor A and Advisor B. They both provide informative signals

to the investor. Advisor A will send the investor one of the two signals with equal

probability: “invest” or “not invest.” If his signal is “invest,” the probability that the
1Note that she will be as happy not to invest in a bad company as to invest in a good company,

considering the opportunity cost.
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company is good is 70% (Pr(G|“invest”) = 0.7). If his signal is “not invest,” the

probability that the company is good is 30% (Pr(G|“not invest”) = 0.3). Since the

number of possible signals sent from Advisor A is 2, the size of his signal space is 2.

On the other hand, Advisor B has a larger signal space. Advisor B will send

the investor one of these five signals with equal probability: “must invest,” “invest,”

“no opinion,” “not invest,” or “never invest.” The respective probabilities that the

company is good when each signal is sent are 0.8, 0.7, 0.5, 0.3, and 0.2. Since the

number of possible signals he will send is 5, the size of his signal space is 5.

If the investor is an expected utility maximizer, she only considers the signal

accuracy of the advisor, which is defined by the “winning” probability when receiving

the signal. For instance, if the investor receives and follows the signal from Advisor

A, her winning probability is 0.7 regardless of whether she receives “invest” or “not

invest.” Hence, Advisor A’s signal accuracy is 0.7. Similarly, Advisor B’s signal

accuracy is also 0.7.2 Therefore, if the investor maximizes expected utility, she will

be indifferent between Advisors A and B.

However, there might be some possible reasons to prefer larger or smaller signal

space. In certain environments, limiting the size of the signal space can restrict

the attainment of optimal outcomes. For instance, in most standard sender-receiver

literature, a small signal space size can lead to inefficient outcomes (Crawford and

Sobel, 1982; Heumann, 2020). Hence, in these cases, a larger signal space allows

better decision-making.

On the other hand, decision-makers might prefer a simpler environment—a smaller

signal space—if the signals are too complicated to comprehend. For instance, workers

might prefer receiving direct instructions on what to do rather than abstract signals

from their boss, which require interpretation of the boss’s intent. This preference

could be attributed to complexity aversion, which demonstrates a tendency to prefer

simpler lotteries over complex ones, even when the expected values are the same
2See Appendix A.1.1 for detailed calculations.
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(Huck and Weizsäcker, 1999; Sonsino et al., 2002; Halevy, 2007; Moffatt et al., 2015).

To investigate the preference for the size of the signal space, I conducted a lab

experiment. In the experiment, the size of the signal space was independent of the

efficiency of the outcomes: the signal accuracy of each signal was the same. Therefore,

there is no theoretical reason to prefer a larger signal space. Additionally, since the

experiment was designed to be simple and straightforward, there was no evidence of

complexity aversion. However, the results surprisingly revealed a preference for larger

signal space. The results suggest that the investor favors Advisor B over A due to

the size of the signal space.

This paper presents the first empirical evidence that the size of the signal space

matters in information acquisition. In Study 1, subjects in a lab experiment placed

bets on the binary outcomes of four lotteries. Before betting, they could purchase

a signal for each lottery. For each lottery, while the signal accuracy was identical,

the size of the signal space varied from 2 to 5. The results showed that subjects’

willingness to pay for the signal increased as the size of the signal space increased,

even with fixed signal accuracy. Therefore, subjects overpaid for the signals when

the signal space was large, resulting in lower profits when purchasing signals from a

larger signal space. Despite individuals’ tendency to prefer simpler situations when

making decisions, the preference for a larger signal space may seem counterintuitive

because a larger signal space generates a more complex environment.

One possible explanation for the preference for a larger signal space could be

that individuals mistakenly believe that a larger signal space indicates higher signal

accuracy. However, in a second study, this explanation was falsified. In Study 2,

I measured subjects’ willingness to pay for playing each of the four lotteries from

Study 1 when the signal was provided for free. In other words, subjects in Study

2 always received the signal in each lottery. If decision-makers truly believed that

a larger signal space implies higher signal accuracy, then subjects in Study 2 should

have valued lotteries with larger signal space more. However, the results revealed that
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subjects no longer preferred a larger signal space; they were indifferent to the size of

the signal space. This suggests that the value of signals is not necessarily the same

as that of equivalent lotteries. Furthermore, subjects showed different risk attitudes

towards them, exhibiting risk-seeking behavior when valuing signals and risk-averse

behavior when valuing lotteries.

Curiosity provides the most plausible interpretation of the experimental findings.
3 Curiosity indicates an intrinsic motivation for seeking knowledge that might not

have instrumental value. When subjects purchase a signal, curiosity makes their view

myopic: they tend to focus on the signal itself instead of the outcome. When the size

of the signal space is larger, the probability of choosing the “correct” signal becomes

smaller. Hence, subjects pay more to uncover the uncertainty regarding the signal.

Receiving a signal and playing a simple lottery based on the signal’s information

can be perceived as a two-stage lottery. In this environment, the preference for a larger

signal space could be interpreted as a violation of the reduction of compound lottery

axiom (ROCL). When a decision-maker can reduce compound lotteries, there is no

reason to pay more for a signal with a larger space, given the same signal accuracy.

Halevy (2007) revealed that ambiguity neutrality and reduction of compound lotteries

are tightly associated. Extending his finding to signal acquisition, the preference for

a larger signal space should be correlated with ambiguity neutrality. However, this

paper did not find a correlation.

This paper has two main contributions. First, the empirical findings of this paper

suggest how to deliver information from the view of information providers. Infor-

mation providers, such as financial advisors, medical test providers, or film critics,

can make their services look more valuable by simply increasing the size of the signal

space. For example, the result of this paper suggests that users are more attracted

to a five-star rating system than a binary suggestion, even if the two systems are

equally accurate. Hence, if a service provider switches its recommendation system
3I will provide a detailed explanation In Section 5.
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from a binary suggestion to a five-star rating, demand for the service will increase,

even without improving the system’s accuracy.

Another contribution involves the theoretical aspect of the context of information

design (Kamenica and Gentzkow, 2011). Without loss of generality, most theoretical

studies of information design have restricted the sender’s signal to be “straightfor-

ward,” which is a signal of recommended action such as Advisor A in the investor

example. A straightforward signal, where the signal space is equal to the action space,

allows for simplifying the design of the signal structure. However, the experimental

findings of this paper suggest that the receiver might prefer the environment where

the signal space is larger than the action space.

Section 3 provides theoretical predictions from various models, but none of them

can explain the preference for larger signal space. The expected utility model predicts

the same value for each signal. The recursive smooth ambiguity model of Klibanoff

et al. (2005), the rank-dependent utility model (Quiggin, 1982), and prospect theory

(Kahneman and Tversky, 1979, 1992) propose different values for different signals.

Despite these differences, none of these models can adequately predict the systemic

preference for signal space size and the behavioral differences observed between Study

1 and Study 2. This gap between theoretical models and the experimental evidence

poses a substantial challenge for game theory.

This paper proceeds as follows. Section 2 describes the experimental design and

procedure. Section 3 provides theoretical predictions of the results from various mod-

els. Section 4 reveals experimental results, and Section 5 concludes.

2 Experimental Design

Participants were assigned to one of two studies: Study 1 or Study 2. Each study

consisted of two parts. Part 1 measured the value of signals in Study 1 or equivalent

lotteries in Study 2, and Part 2 measured ambiguity attitudes using Ellsberg (1961)
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questions.

2.1 Part 1: The Value of Signals/Lotteries

There are four lotteries in Part 1. Each lottery contains several boxes, with each box

containing ten balls, either red or blue. In each lottery, the computer draws a ball in

two stages. In the first stage, the computer randomly selects one of the boxes with

an equal probability. In the second stage, the computer randomly draws a ball from

the selected box. Between the first and the second stages, subjects predict the color

of the ball which will be drawn. If their prediction is correct, they receive 100 points,

where each point is equal to 0.01 USD. Figure 1 illustrates the four lotteries.4

Figure 1: Four lotteries

Each box is denoted by Box Xn, where X ∈ {R,B,G} and n ∈ {5, 6, 7, 8, 9}.5 X

and n represent the majority color of the balls in the box and the number of balls
4To avoid the possibility of cognitive load, the maximum size of the signal space is 5.
5Ambuehl and Li (2018) elicited the demand for informative signals and found that people sig-

nificantly prefer information that might yield certainty. Therefore, to avoid the certainty effect, I
exclude the box of n = 10.
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in the box, respectively. For example, Box R7 has more red balls than blue balls,

and the number of red balls is 7.6 Note that there is no other Box Gn than Box G5

because Box G always contains 5 red balls and 5 blue balls.

In Study 1, subjects did not know which box was selected. However, before the

prediction, they had a chance to “buy” a costly signal with their 100 endowment

points. If they purchased a signal, the computer would tell them which box had

been selected. This signal increased their probability of winning but required a cost,

whether they won or lost.

For example, in Lottery 2, there are three boxes: Box R8, Box G5, and Box B8.

Suppose Box R8 is randomly selected. Without the signal, subjects do not know

which box was chosen. Their winning probability is 50% whether they bet on a red

or blue ball because there is a total of 15 red balls and 15 blue balls in Lottery 2. If

they buy the signal, they learn that Box R8 was selected, and the ball will be drawn

from Box R8. The signal “Box R8” increases the odds of winning to 80% because Box

R8 contains 8 red and 2 blue balls.

One of the key features of this experiment is that each lottery always has 50%

red balls and 50% blue balls. This implies that the prior, the winning probability

without the signal, is 50% for all lotteries. Another essential feature is that the signal

accuracy for each lottery is the same. If participants purchase the signal, the winning

probability increases to 70% for all four lotteries. The only difference between them

is the number of boxes, representing the possible number of signals.

In Study 2, the values of the four lotteries were measured when the signals were

provided for free: before predicting the ball’s color, subjects could observe which box

was selected without purchasing signal. If subjects had a preference over the size of

the signal space in Study 1, they should have had the same preference in Study 2.

To quantify the values of the lotteries, the subjects’ willingness to pay to play each
6In the actual experiment, the boxes were referred to as Box R, Box B, Box G, Box RR (if

there were multiple Box R in the same lottery), and Box BB (if there were multiple Box B in the
same lottery). Numerical labels were deliberately avoided to encourage participants to rely more on
intuition.
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lottery was measured. Figure 2 shows the timeline of both studies.

Study 1

Box Signal Outcome

WTP for signals Prediction

Study 2

Box Signal Outcome

WTP for lotteries Prediction

Figure 2: Timeline of studies

To measure the willingness to pay, I employed the Becker-DeGroot-Marschak

(BDM) mechanism (Becker et al., 1964) in the format of a multiple price list. In

Study 1, subjects submitted the maximum points they were willing to pay for each

lottery, which represented the values of the signals. After submitting values for signals

for all four lotteries, one of them was randomly selected. A random number between

1 and 100 was generated, representing the price for the signal for the selected question

in the chosen lottery. If a subject’s submitted value in the selected lottery was greater

than the price, she could see the signal and pay the price. However, if the submitted

value in the selected lottery was equal to or lower than the price, she did not receive

the signal and pay nothing. After the signal was revealed or not revealed, subjects

predicted the color of the ball. Table 1 displays the questions in the BDM.
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Q# Option A Choices Option B

1 Buying a Signal for 1 point Not Buying a Signal
2 Buying a Signal for 2 points Not Buying a Signal
3 Buying a Signal for 3 points Not Buying a Signal
4 Buying a Signal for 4 points Not Buying a Signal
...

...
...

...
97 Buying a Signal for 97 points Not Buying a Signal
98 Buying a Signal for 98 points Not Buying a Signal
99 Buying a Signal for 99 points Not Buying a Signal
100 Buying a Signal for 100 points Not Buying a Signal

Table 1: The BDM mechanism in Study 1

The procedure of the BDM in Study 2 was similar to that in Study 1 (See Table 2).

Prior to playing the lotteries, subjects were asked to submit the maximum number of

points they were willing to pay for playing each lottery. After submitting four values

for four lotteries, one of the lotteries was randomly selected. Then, a random number

between 1 and 100, representing a substitute prize, was generated. If the submitted

value for the selected lottery was greater than the prize, the subject played the lottery.

Otherwise, she received the substitute prize without playing. If the subject played

the lottery, they observe which box was selected and predict the color of the ball from

that box.

The major issue with the BDM mechanism is its difficulty, which can lead to

biased results in some environments.7 To minimize the confusion, subjects were asked

to indicate their maximum willingness to pay for the signal, rather than making 100

choices between Option A and B. Additionally, before subjects made their actual

decision, an example was provided to illustrate how the mechanism works when a

specific value was submitted. Furthermore, even if the results biased, whether upward

or downward, it does not undermine the primary purpose of the BDM mechanism

in this paper, which is to compare preferences between signals and between lotteries,
7See Noussair et al. (2004) for discussions about the biased results of the BDM.
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Q# Option A Choices Option B

1 Playing the lottery Receiving 1 point
2 Playing the lottery Receiving 2 points
3 Playing the lottery Receiving 3 points
4 Playing the lottery Receiving 4 points
...

...
...

...
97 Playing the lottery Receiving 97 points
98 Playing the lottery Receiving 98 points
99 Playing the lottery Receiving 99 points
100 Playing the lottery Receiving 100 points

Table 2: The BDM mechanism in Study 2

rather than to elicit their exact values.

There are two hypotheses to test. Study 1 measured subjects’ willingness to pay

for the signal. If signal accuracy is the only factor that determines the value of the

signal, the demand for signals for all four lotteries should be the same. If ci indicates

the cost that subjects are willing to pay for the signal of lottery i,

c1 = c2 = c3 = c4. (1)

Hypothesis 1. The size of the signal space does not affect the demand for the signal.

If Li denotes lottery i, let V signal
i (c) represent a value of Li with the signal with the

cost c. Then, Study 2 measured V signal
i (0) for four lotteries. Suppose a subject values

the signal for lottery i more than the signal for lottery j. Then, she will also value

lottery i more than lottery j even when the signal is free: ci > cj =⇒ V signal
i (0) >

V signal
j (0). Then, the following hypothesis holds.

Hypothesis 2. The rank among ci is identical to the rank among Vi(0).

To avoid subjects focusing only on the size of the signal space, lotteries were

presented in the order of L1, L3, L2, L4 in both studies.
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2.2 Part 2: Ellsberg Questions

After eliciting the value of signals, subjects’ ambiguity attitudes were measured using

two questions from Ellsberg (1961). Ambiguity attitude is closely related to two-stage

lotteries, particularly to the ability to reduce compound lotteries (Halevy, 2007; Seo,

2009). Halevy (2007) showed a strong association between ambiguity neutrality and

the reduction of compound lotteries. Since a preference for a larger/smaller signal

space can be interpreted as a failure to reduce compound lotteries, this task helps to

understand how ambiguity attitude relates to a preference for the size of the signal

space.

The following statement describes the task.

Consider there is a bag containing 90 ping-pong balls. 30 balls are blue,
and the remaining 60 balls are either red or yellow in unknown proportions.
The computer will draw a ball from the bag. The balls are well mixed so
that each ball is as likely to be drawn as any other. You will bet on the
color that will be drawn from the bag.

Subjects were asked to choose their preferred options between A and B and between

C and D. Table 3 illustrates the four options.

Options

Option A receiving 100 points if a blue ball is drawn.
Option B receiving 100 points if a red ball is drawn.

Option C receiving 100 points if a blue or yellow ball is drawn.
Option D receiving 100 points if a red or yellow ball is drawn.

Table 3: Ellsberg questions

If a subject prefers option A to B and option D to C, there is no subjective prob-

ability formulation that can rationalize this preference. This preference is interpreted

as a consequence of ambiguity aversion.

After the rewards from parts 1 and 2 were determined, one of the parts was

randomly selected, and subjects received the points in the selected part. Each point
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was converted to 0.01 USD.

2.3 Procedural Details

A total of 467 subjects participated in the experiments through Prolific, which is

an online platform for recruiting research participants.8 Specifically, 179 and 158

subjects participated in studies 1 and 2, respectively. Also, an additional 130 subjects

participated in a robustness study, which is discussed below. On average, subjects

spent 10 minutes and earned $3.32, including a $2.20 base payment.

2.4 Robustness Study

In addition to the main studies, an additional study was implemented to investigate

the robustness of the results. The robustness study provides evidence on whether

subjects understood the procedure correctly.

The procedure of this study was identical to Part 1 of Study 1, where subjects were

asked to value signals in uncertain lotteries. To investigate subjects’ understanding,

the values of signals for eight lotteries were measured. The signal of each lottery

provides a different winning probability. If subjects understood this information ac-

quisition framework correctly, they would be more willing to pay for a signal with a

higher winning probability. Figure 3 illustrates the lotteries in this study.

Table 4 summarizes the details of the lotteries. Lotteries 1-4 have two boxes, Box

Rn and Box Bn, where n ∈ {5, 6, 7, 8, 9, 10}. Hence, the size of the signal space is

2. Also, since Lotteries 5-8 have three boxes, Box Rn, Box Gn, and Box Bn, the

size of the signal space is 3 for these lotteries. The signal accuracy, which is the

winning probability with the signal of each lottery, is described in the third column.

The fourth column shows the theoretical prediction when the decision-maker is a
8Gupta et al. (2021) demonstrated that Prolific can be a reliable source of high-quality data. For

details on Prolific’s subject pool, see Palan and Schitter (2018). In both studies, only US subjects
participated.
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Figure 3: Lotteries in the robustness study

risk-neutral utility maximizer. If subjects understood the information framework of

the signaling process, their demands for the signals would be in line with theoretical

predictions.

3 Theoretical Predictions

Let Lpriori denote lottery i without the signal, and let Lsignali (c) denote lottery i with

the signal purchased at a cost of c, where c ≥ 0. Also, Vi represents the values of

lotteries i, where V signal
i (0) ≥ V prior

i . This implies that the value of the lottery with

a signal is weakly better than the value of the lottery without a signal when the cost

of the signal is free. There are two assumptions regarding the function V (c).

Assumption 1. V (c) is a decreasing function of c.

Assumption 2. Vi(c) ≥ Vj(c) implies Vi(c′) ≥ Vj(c
′).
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Table 4: Summary of lotteries in the robustness study

Questions Signal Space Size Signal Accuracy Predictions

1 2 0.80 30
2 2 1.00 50
3 2 0.60 10
4 2 0.90 40
5 3 0.70 20
6 3 0.83 33.3
7 3 0.57 6.7
8 3 0.77 26.7

Assumption 1 implies that the value of the lottery with the signal decreases when

the cost of the signal increases. Additionally, Assumption 2 suggests that if an individ-

ual prefers lottery i to lottery j when the cost is c, the preference remains unchanged

when the cost changes to c′.

When ci is the price for the signal for lottery i, the optimal price for the signal

c∗i is determined at the point where the value of lottery i with the signal is equal to

the value of the lottery i without the signal. Therefore, the values of c∗i and c∗j can

be obtained when V signal
i (c∗i ) = V prior

i and V signal
j (c∗j) = V prior

j hold.

Since V prior
i = V prior

j ,

V signal
i (c∗i ) = V signal

j (c∗j). (2)

For simplicity, I will use the notation Vi(c) instead of V signal
i (c) from now on.

Consider a scenario where the submitted price for lottery i is greater than the price for

lottery j, i.e., ci ≥ cj. According to the Equation 2, we have Vi(ci) = Vj(cj) = V prior.

Additionally, Assumption 1 implies Vi(ci) ≤ Vi(cj), which leads to Vj(cj) ≤ Vi(cj).

Assumption 2 indicates that Vj(c) ≤ Vi(c). Therefore, the following implication holds.
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c∗i ≥ c∗j =⇒ Vi(c) ≥ Vj(c). (3)

For example, let’s suppose an individual is willing to pay 20 points for signal 1

(the signal in lottery 1) and 30 points for signal 2 (the signal in lottery 2). If both

signals are priced equally at 15 points, she would prefer to purchase signal 2 instead

of signal 1. Therefore, to simplify calculations, I will compare the values Vi(c) and

Vj(c) whenever a comparison between ci and cj is necessary.

In Study 1, ci was measured for i ∈ 1, 2, 3, 4. In Study 2, Li(0) was elicited for

i ∈ 1, 2, 3, 4, since the signal was free (c = 0). The remaining part of this section

describes how different theories under uncertainty predict these values.

3.1 Expected Utility

According to expected utility theory, the decision-makers assign a probability p(s) to

the state s ∈ S to evaluate a lottery. Therefore, the expected utility of lottery i is

given by

UEU(Li) =
∑
s∈S

p(s)u(Li(s)). (4)

The expected utility suggests that decision-makers are only interested in the expected

values of lotteries, but are indifferent to the process of resolving uncertainty. They

do not distinguish between lotteries that are simple, compound, or mean-preserving

spreads of one another. Therefore, according to the expected utility model, individ-

uals are indifferent between signals and between lotteries.

c1 = c2 = c3 = c4, (5)

V1(0) = V2(0) = V3(0) = V4(0).
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3.2 Recursive Smooth Ambiguity Utility

The recursive smooth ambiguity model by Klibanoff et al. (2005) (KMM, hereafter)

suggests a theoretical utility model involving a second-order belief. KMM assumes

that the decision-makers have a subjective expected utility in the space of second-

order compound lotteries. Specifically, when they evaluate lottery i, there exists a

second-order belief µ such that

UKMM(Li) =
∑
∆(S)

φ
(∑
s∈S

p(s)u(Li(s))
)
µ(p), (6)

where µ is a second-order subject belief, ∆ is the set of possible first-order objective

lotteries, and φ is a monotone function evaluating the expected utility associated with

first-order beliefs.

Suppose an individual evaluates the signal for lottery 1 using a recursive smooth

ambiguity model. There are two possible outcomes in the first stage (second-order):

the selected box is R7 or B7. In the second stage (first-order), the expected utility

for both cases is 0.7u(100− c) + 0.3u(−c). Therefore, the evaluation of L1(c) is given

by

UKMM(L1(c)) =
1

2
φ(0.7u(100− c) + 0.3u(−c)) +

1

2
φ(0.7u(100− c) + 0.3u(−c))

= φ(0.7u(100− c) + 0.3u(−c))

Similarly, the values of other lotteries are evaluated as

UKMM(L2(c)) =
2

3
φ(0.8u(100− c) + 0.2u(−c)) +

1

3
φ(0.5u(100− c) + 0.5u(−c)),

UKMM(L3(c)) =
1

2
φ(0.8u(100− c) + 0.2u(−c)) +

1

2
φ(0.6u(100− c) + 0.4u(−c)),

UKMM(L4(c)) =
2

5
φ(0.8u(100− c) + 0.2u(−c)) +

2

5
φ(0.7u(100− c) + 0.3u(−c))

+
1

5
φ(0.5u(100− c) + 0.5u(−c)).
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When the second-order belief µ is subjective, KMM explained ambiguity aversion

by the concavity of φ. If φ is concave, individuals will prefer Lottery X over Lottery

Y when Y is a mean-preserving spread of X. Since L3(c) is a mean-preserving spread

of L1(c), decision-makers prefer L1(c) to L3(c):

For easier computation, let’s define U(α) as,

U(α) ≡ αu(100− c) + (1− α)u(−c).

Then,

UKMM(L1(c)) = φ(0.7u(100− c) + 0.3u(−c))

= φ(U(0.7))

≥ 1

2
φ(U(0.8)) +

1

2
φ(U(0.6))

= UKMM(L3(c)).

Additional calculations (detailed in Appendix A.1) reveal the following prefer-

ences.

c1 ≥c3 ≥ c2, (7)

c1 ≥c4 ≥ c2.

As Li(0) represents a specific form of Li(c), the preference among Li(0) remains

unchanged. Therefore, regardless of ambiguity attitude, KMM predicts consistent

preferences between Study 1 and Study 2.

V1(0) ≥V3(0) ≥ V2(0), (8)

V1(0) ≥V4(0) ≥ V2(0).
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When φ is convex, which implies ambiguity seeking, the opposite inequalities hold:

c2 ≥c3 ≥ c1, (9)

c2 ≥c4 ≥ c1,

V2(0) ≥V3(0) ≥ V1(0), (10)

V2(0) ≥V4(0) ≥ V1(0).

3.3 Simulational Predictions from Other Models

3.3.1 Rank-Dependent Utility

The rank-dependent utility (RDU) model proposes a probability weighting approach

based on the rank order of outcomes (Quiggin, 1982; Segal, 1987, 1990). According to

the RDU model, the utility of a lottery that pays xi with probability pi is described

as

URDU(x1, p1;x2, p2; · · · ;xn, pn) = u(x1) +
n∑
i=2

[u(xi)− u(xi−1)]f(
n∑
j=i

pj), (11)

where x1 ≤ x2 ≤ x3 · · · ≤ xn, f : [0, 1] → [0, 1], f(0) = 0 and f(1) = 1. For the

simple lottery that pays out 100 with probability p and 0 with probability 1− p,

U(100, p; 0, 1− p) = u(100)f(p). (12)

Suppose its certainty equivalent is CE(p), then

CE(p) = CE(100, p; 0, 1− p) = u−1(u(100)f(p)). (13)

Hence,

URDU(L1(0)) = u(CE(0.7)) = u(100)f(0.7).
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Similarly, the values of other lotteries with free signals are calculated as

URDU(L2(0)) = u(100)f(0.5) + [u(100)(f(0.8)− f(0.5))]f(
2

3
),

URDU(L3(0)) = u(100)f(0.6) + [u(100)(f(0.8)− f(0.6))]f(
1

2
),

URDU(L4(0)) = u(100)f(0.5) + [u(100)(f(0.7)− f(0.5))]f(
4

5
)

+ [u(100)(f(0.8)− f(0.7))]f(
2

5
).

The preferences between lotteries vary depending on the functional form of f(p).

Table 5 illustrates the simulated predictions of the RDU model with various concave

functional forms.

Table 5: Theoretical predictions by RDU

f(p) Preferences between ci Preferences between Vi(0)

p0.1 c2 ≥ c4 ≥ c3 ≥ c1 V2(0) ≥ V4(0) ≥ V3(0) ≥ V1(0)
p0.5 c2 ≥ c4 ≥ c3 ≥ c1 V2(0) ≥ V4(0) ≥ V3(0) ≥ V1(0)
p0.8 c2 ≥ c4 ≥ c3 ≥ c1 V2(0) ≥ V4(0) ≥ V3(0) ≥ V1(0)
p c1 = c2 = c3 = c4 V1(0) = V2(0) = V3(0) = V4(0)

log(p) c1 ≥ c3 ≥ c2 ≥ c4 V1(0) ≥ V3(0) ≥ V2(0) ≥ V4(0)
ln(p) c1 ≥ c3 ≥ c2 ≥ c4 V1(0) ≥ V3(0) ≥ V2(0) ≥ V4(0)

The simulation results indicate that the RDUmodels with various functional forms

of f(p) do not predict the preference for larger signal space.

3.3.2 Cumulative Prospect Theory

The first version of prospect theory, formulated by Kahneman and Tversky (1979),

provided evidence of a systematic violation of expected utility theory. The authors

presented an alternative theoretical model to explain this violation. Later, an ex-

tension of the original model called cumulative prospect theory was presented by
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Kahneman and Tversky (1992), which incorporates rank-dependence in probability

weighting.

According to the cumulative prospect theory (CPT), the utility of a lottery paying

xi with probability pi is described as

UCPT (xm, pm;xm+1, pm+1; · · · ;x0, p0; · · · ;xn, pn) =
n∑

i=−m

πiv(xi), (14)

where v(·) is a value function, which is an increasing function with v(0) = 0, and π

is the decision weight. Kahneman and Tversky (1992) defined the value function as

follows.

v(x) =

x
α if x ≥ 0,

−λ(−x)β if x < 0,

(15)

where λ is a loss aversion parameter.

Decision weights π are defined by:

π+
n = w+(pn), (16)

π−−m = w+(p−m),

π+
i = w+(pi + ...+ pn)− w+(pi+1 + ...+ pn), 0 ≤ i ≤ n− 1,

π−i = w−(p−m + ...+ pi)− w−(p−m + ...+ pi−1), 1−m ≤ i ≤ 0,

where w+ and w− are the following functions.

w+(p) =
pγ

(pγ + (1− p)γ)1/γ
, w−(p) =

pδ

(pδ + (1− p)δ)1/δ
. (17)

To predict the preferences for ci and Vi(0) using CPT, I used the parameter values

that were estimated from experimental data in Kahneman and Tversky (1992).
9According to a meta-analysis by Brown et al. (2022), the mean of the loss aversion coefficient λ

20



Table 6: Values of parameters from Kahneman and Tversky (1992)

Parameter Meaning Value

α power for gains 0.88
β power for losses 0.88
λ loss aversion 2.259

γ probability weighting parameter for gains 0.61
δ probability weighting parameter for losses 0.69

Additionally, I assumed the cost of the signal to be 20, which is the theoretically

expected value when the decision-maker is a risk-neutral expected utility maximizer.

Therefore, the preference between ci is based on simulation results from Li(20). With

these parameter values, CPT predicts the following preferences:

c1 ≥ c3 ≥ c4 ≥ c2, (18)

V1(0) ≥ V3(0) ≥ V4(0) ≥ V2(0).

To summarize the theoretical predictions for the value of signals in Study 1, none

of the models predict a preference for a larger signal space (c1 ≥ c2 ≥ c3 ≥ c4).

Prediction 1. Preference for a larger signal space does not exist.

This prediction is consistent with Hypothesis 1. Furthermore, none of the models

predict different preferences between ci and Vi(0), which is consistent with Hypothesis

2.

Prediction 2. Preferences in both studies are identical.

To summarize, theoretical predictions are aligned with the hypotheses: no theoret-

ical models predict the preference for a larger signal space or inconsistent preferences.

from numerous empirical estimates is 1.97. I found that simulational results with λ = 1.97 do not
change the preference between lotteries.
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4 Results

4.1 Preference for a Larger Signal Space

Table 7: Elicited values for ci and Vi(0) with different size of signal space.

Study 1 Study 2
Lottery |S| ci Number Vi(0) Number

1 2 23.6 179 52.9 158
2 3 24.9 179 48.9 158
3 4 25.8 179 51.0 158
4 5 29.8 179 52.7 158

Cuzick’s test p-value 0.005 0.574

Table 7 shows the submitted value for each signal (ci) and each lottery given the

signal (Vi(0)) in points. |S| represents the size of the signal space. Regarding ci, the

theoretical predictions from the risk-neutral expected utility maximizer are 20 points

for each lottery. Therefore, overall, the demand for signals exceeds the theoretical

predictions. The most notable feature of the willingness to pay for the signal is the

preference for a larger signal space: the demand for the signal increases as the size of

the signal space increases. However, in Study 2, the size of the signal space does not

affect the value of equivalent lotteries.

To examine these relationships formally, I consider linear regressions of the form:

yin = β0 + β1|S|i + β2AmbNeutraln + β3|S|i ∗ AmbNeutraln + εin. (19)

yi,n is the value of either ci or Vi(0) for individual n, and AmbNeutraln is a dummy

variable that indicates whether individual n is ambiguity neutral or not. Standard

errors are clustered by subject.

The first three columns in Table 8 indicate a significant effect of the size of the

signal space on the value of signals (F-test p-values < 0.001 for these columns). As the
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Table 8: Determinants of the demand for signals and lotteries

Dependent variable: Dependent variable:
ci Vi(0)

(1) (2) (3) (4) (5) (6)

Signal Space Size 1.93*** 2.03*** 1.93*** 0.16 0.08 0.16
(0.40) (0.55) (0.40) (0.50) (0.73) (0.50)

Ambiguity Neutrality 1.06 −2.85
(3.77) (4.37)

Signal Space Size × −0.20 0.16
Ambiguity Neutrality (0.79) (1.01)
Constant 19.28*** 18.78*** 19.28*** 50.82*** 52.34*** 50.82***

(1.87) (2.50) (1.38) (2.18) (3.20) (1.76)
Subject fixed effect No No Yes No No Yes
Observations 716 716 716 632 632 632
R-squared 0.010 0.010 0.046 0.000 0.003 0.000

F-test p-value 0.0000 0.0001 0.0000 0.7502 0.8211 0.7502

Notes: Robust standard errors clustered by subject in parentheses. Columns (2) and (5) cannot
include subject fixed effect because the ambiguity attitude is measured at the subject level. ***p <
0.01, ** p < 0.05, *p < 0.1.

size of the signal space increases, the willingness to pay for the signal also increases.

Result 1. (Preference for Larger Signal Space) Demand for the signal increases

as the signal space size increases.

Result 1 rejects Hypothesis 1. Also, columns (4)-(6) show that the signal space

size no longer affects the value of lotteries when the signal is free. (F-test p-values

are 0.7502, 0.7504, and 0.7502 for each column.) This result rejects Hypothesis 2.

Result 2. (Inconsistent Preferences) The size of the signal space does not affect

the value of equivalent lotteries.

Since no theoretical model predicts the preference for larger signal space, the result

falsifies Prediction 1. Also, no model predicts inconsistent preferences. Therefore,

Predictions 1 and 2 are both falsified by the experimental results.
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Table 9: Individual preferences among ci and among Vi(0).

Study 1 Study 2
Preference Number Percentage Number Percentage

Larger Signal Space 39 21.8% 17 10.8%
Indifferent 33 18.4% 28 17.7%

Smaller Signal Space 6 3.4% 15 9.5%
Others 101 56.4% 98 62.0%

Total 179 100.0% 158 100.0%

Table 9 illustrates the individual preferences between signals and lotteries. In

Study 1, a larger proportion of subjects preferred the larger signal space (c4 ≥ c3 ≥

c2 ≥ c1, but not c1 = c2 = c3 = c4) compared to Study 2 (V4(0) ≥ V3(0) ≥ V2(0) ≥

V1(0), but not V1(0) = V2(0) = V3(0) = V4(0)). Additionally, in Study 1, a smaller

proportion of subjects preferred the smaller signal space (c1 ≥ c2 ≥ c3 ≥ c4, but not

c1 = c2 = c3 = c4) compared to Study 2 (V1(0) ≥ V2(0) ≥ V3(0) ≥ V4(0), but not

V1(0) = V2(0) = V3(0) = V4(0)). There is no proportional difference between the

groups who showed indifference to signal space size (c1 = c2 = c3 = c4 or V1(0) =

V2(0) = V3(0) = V4(0)).

4.2 Risk Attitudes

Suppose the utility function is given by u(x) = x1−r. This specification implies that

an individual is risk-averse for r > 0, risk-neutral for r = 0, and risk-seeking for r < 0.

Based on the submitted values for the lotteries (Vi(0)) in Study 2, the estimated value

of the risk parameter r is approximately 0.46, according to the expected utility model.

This finding suggests that subjects in Study 2 exhibited risk-averse behavior.

If subjects in Study 1 had the same utility function with r = 0.46, then their

submitted value for each signal (ci) should have been 10.1. (ci < 20 indicates risk-

averse, ci = 20 indicates risk-neutral, and ci > 20 indicates risk-seeking.10) However,
10Note that risk-averse individuals are less likely to prefer purchasing the signal because they
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the actual submitted values of ci, whose average was 26.0, suggest that the individuals

in Study 1 exhibited risk-seeking behavior.

Result 3. Subjects displayed risk-seeking behavior when valuing signals, but were

risk-averse when valuing equivalent lotteries.

4.3 Ambiguity Attitudes

Table 10: Ambiguity attitudes

Ambiguity Study 1 Study 2
Attitude Number Percentage Number Percentage

Averse 72 40.2% 55 34.8%
Neutral 85 47.5% 84 53.2%
Seeking 22 12.3% 19 12.0%

Total 179 100.0% 158 100.0%

Table 11: The submitted values of ci and Vi(0) with different ambiguity attitudes

Attitude c1 c2 c3 c4 V1(0) V2(0) V3(0) V4(0)

Averse 22.8 23.8 24.4 29.9 55.7 49.5 47.7 55.8
Neutral 23.8 26.9 24.9 29.2 50.7 50.8 48.7 50.8
Seeking 25.5 28.7 26.5 31.4 54.2 55.8 52.9 52.2

Total 23.6 25.9 24.9 29.8 52.9 51.0 48.9 52.7

F-test p-value 0.8142 0.5988

Table 10 and 11 respectively describe the ambiguity attitudes of subjects, and

the values of ci and Vi(0) conditional on different ambiguity attitudes. The overall

patterns of the willingness to pay for signals and lotteries remain consistent across dif-

ferent ambiguity attitudes. The F-tests’ p-values indicate that there is no significant

effect of ambiguity attitude on ci or Vi(0).

prefer to play the simplest lottery, which is the lottery without the signal, as it has a 50% chance of
winning or losing.
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The third row of Table 8 confirms that the preference for the size of the signal

space is independent of ambiguity neutrality. This finding contrasts with the results

reported in Halevy (2007), where ambiguity neutrality is strongly linked to the ability

to reduce compound lotteries.

Result 4. Ambiguity neutrality is not related to the preference for the signal space

size.

4.4 Payoffs and the Size of the Signal Space

This section examines if the preference for larger signal space harms the information

buyers. Table 12 displays the subjects’ payoffs in points from Part 1 in both studies.

The profits were larger in Study 1 than in Study 2 due to the 100-point endowment

in Study 1. According to the table, in Study 1, the highest average profit was earned

by the subjects who played the simplest lottery, Lottery 1. This indicates that they

gained a lower profit when they played lotteries with larger signal spaces. However,

this pattern was not observed when valing the lotteries in Study 2.

Table 12: Payoffs from part 1

Lottery Signal Space Study 1 Study 2
Selected Size Payoff Std. Error Number Payoff Std. Error Number

1 2 160.9 7.1 48 71.6 6.2 32
2 3 141.6 7.5 50 80.0 4.5 43
3 4 140.9 7.0 46 67.0 6.2 40
4 5 142.0 8.2 35 72.8 5.4 43

Total 146.7 3.7 179 73.1 2.8 158

Table 13 reports the regression results to clarify whether and when signal space

size affects the payoffs. Columns (1) and (3) reveal the effect of the signal space size

on the payoffs. Results show that only Study 1 has a significant effect: purchasing

signals from larger signal spaces negatively affected payoffs.
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Columns (2) and (4) show the effect of playing the simplest lottery (Lottery 1).

If a subject played more complex lotteries (Lotteries 2-4), her expected payoff was

19.4 points less than when playing Lottery 1 (F-test p-value is 0.0202). The result of

Column (4) reveals that this pattern vanishes in Study 2.

Table 13: Determinants of the payoffs

Dependent variable: Dependent variable:
Payoffs in Study 1 Payoffs in Study 2

(1) (2) (3) (4)

Signal Space Size −6.12* −1.17
(3.38) (2.54)

Simplest Lottery 19.44** −1.79
(8.29) (6.86)

Constant 161.23*** 141.46*** 76.11*** 73.44***
(9.00) (4.33) (6.95) (3.14)

Observations 716 716 632 632
R-squared 0.017 0.030 0.001 0.000

F-test p-value 0.0720 0.0202 0.6466 0.7946

Notes: Robust standard errors clustered by subject in parentheses.
***p < 0.01, ** p < 0.05, *p < 0.1.

Result 5. Subjects earned less profit when purchasing signals from a larger signal

space.

The implication of Result 5 is that individuals tend to overvalue signals when the

signal space is larger, causing them to submit overpriced values for these signals and

ultimately resulting in lower earnings.

4.5 Robustness Study

The results of the robustness study indicate that subjects had a thorough understand-

ing of the information structure, particularly the accuracy of each signal. Subjects’

submitted values for each signal are consistent with the expected utility model.
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Table 14: Summary of results in the robustness study

Questions Signal Space Size Winning Prob Predictions WTPWith Signals

1 2 0.80 30 24.1
2 2 1.00 50 38.0
3 2 0.60 10 24.8
4 2 0.90 40 37.8
5 3 0.70 20 28.4
6 3 0.83 33.3 34.7
7 3 0.57 6.7 23.7
8 3 0.77 26.7 30.8

Table 14 displays the submitted values of the willingness to pay for the signal

in each lottery. What is noteworthy in this table is that subjects valued the signals

consistent with the theoretical prediction. Additionally, in comparison to the WTP

for signals in Lotteries 1-4, subjects overpaid for signals in Lotteries 5-8 due to the

effect of the signal space size. The chi-square test result rejects the null hypothesis

that the willingness to pay for signals was submitted randomly (p-value < 0.001).

Table 15: Determinants of the demand for signals

Dependent variable:
ci

(1) (2) (3) (4)

Predictions 0.25*** 0.27*** 0.25*** 0.27***
(0.07) (0.07) (0.07) (0.07)

Signal Space Size 1.51 1.51
(1.06) (1.06)

Constant 22.32*** 17.97*** 22.32*** 17.97***
(1.98) (3.72) (1.75) (3.61)

Subject fixed effect No No Yes Yes
Observations 1040 1040 1040 1040
R-squared 0.020 0.020 0.045 0.047

Notes: Robust standard errors clustered by subject in parentheses.
***p < 0.01, ** p < 0.05, *p < 0.1.
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The results presented in Table 15 support the claim that subjects had a thorough

understanding of the entire information structure, including the meaning of signal

accuracy. Theoretical predictions based on the risk-neutral expected utility model

are significantly related to the actual submitted values.

The second row of the table suggests that the signal space size has a positive effect

on the demand for signals, but the effect is not statistically significant.

5 Conclusion

Economists have examined various environments where individuals purchase costly

stochastic information. This article contributes to the literature by experimentally

investigating the demand for signals with different signal space sizes. It provides the

first empirical evidence of a preference for a larger signal space in the information

acquisition process. Specifically, subjects preferred to receive a signal from a larger

signal space, even when signal accuracy was fixed. Furthermore, an inconsistent

preference pattern was observed, where the preference for the larger signal space

disappeared when the value of equivalent lotteries was measured.

What is the behavioral reason for the preference for a larger signal space? One

possible explanation is that subjects were confused and had a poor understanding of

signal accuracy. However, this explanation is not plausible because the experimental

design allowed subjects to easily calculate the signal accuracy. Additionally, the

results of the robustness study (see Section 4.5) reject the argument that subjects

were confused about understanding the signal accuracy.

Another explanation for the preference for a larger signal space is that subjects

mistakenly believed that a larger signal space implies higher signal accuracy. In many

cases, a larger number of signals implies more information. Numerous theoretical

and experimental studies have shown a preference for frequent signals in various

contexts. For instance, in Edmond (2013)’s model of information and political regime
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change, the number of informative signals helps to overthrow the regime. Additionally,

Lee and Niederle (2015) demonstrated that more signals (virtual roses) increase the

success rate of dates in the internet dating market. However, this explanation cannot

account for the inconsistent preferences observed in Study 2. If subjects believed that

signals from larger signal spaces were more accurate, they should have also valued

the equivalent lotteries.

The third and most plausible explanation is based on curiosity or a myopic view.

A contemporary definition of curiosity characterizes it as an intrinsic motivation to

seek information, even when it has no instrumental value (Loewenstein, 1994; Oudeyer

and Kaplan, 2007; Kidd and Hayden, 2015). In Study 1, suppose that subjects were

focused on guessing the selected box rather than the color of the drawn ball. Without

the signal, a lottery containing more boxes reduces the chance of choosing the “correct”

box. Therefore, when a lottery has more boxes, subjects may be willing to pay more

to reveal uncertainty about the boxes. However, when they consider the value of the

entire lottery, they realize that each lottery is identical, which means that they have

the ability to reduce the complexity of compound lotteries.

Imagine someone deciding whether or not to go to a restaurant. She makes her

decision based on a five-star rating suggestion: she goes to the restaurant only when

the rating is greater than 3. Since her choice is binary, this five-star system could be

simplified to a binary suggestion. For example, the suggestion is “Go” if the rating

is greater than 3, and “Don’t Go” otherwise. In that case, the information about

whether the restaurant’s rating is 4 or 5 has no instrumental value for her decision

because she will go in either case. However, the perspective of curiosity suggests

that she still wants to know this information, even if it has no practical value for her

decision.

Several questions remain unanswered at present. This paper presents a preference

for a larger signal space when the signal space size is between 2 and 5. However,

the results do not confirm the optimal size of the signal space. It is possible that
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decision-makers would prefer a larger space even when the signal space is extremely

large, or there may be a most preferred signal space size.

Another question is whether these results can be generalized to a non-binary ac-

tion space or even a continuous one. The experimental design of this paper restricts

the action space to binary. In reality, however, actions are not necessarily binary.

Therefore, investigating whether the results of this paper still hold in a more gener-

alized action space is also an interesting question. I hope future studies will answer

these questions.
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A Appendix

A.1 Omitted Calculations

A.1.1 Investor Example

Suppose the investor gets a signal from Advisor A. The conditional probability that

the company is good is given by

Pr(G|“invest”) = 0.7,

P r(G|“not invest”) = 0.3.

Let INVEST or NOT INVEST denotes the investor’s action. When the signal is

“invest”, then the investor will invest in the company, because Pr(G|“invest”) = 0.7 >

0.5. In this case, her expected utility is

u(signal=“invest”)

= 0.7u(INVEST, G) + 0.3u(INVEST, B)

= 0.7 ∗ 1 + 0.3 ∗ 0 = 0.7.

Otherwise, she will not invest because Pr(G|“not invest”) = 0.3 < 0.5. Her ex-

pected utility is given by

u(signal=“not invest”)

= 0.3u(NOT INVEST, G) + 0.7u(NOT INVEST, B)

= 0.3 ∗ 0 + 0.7 ∗ 1 = 0.7.
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Therefore, the expected utility when receiving Advisor A’s signal is

0.5u(signal=“invest”) + 0.5u(signal=“not invest”)

= 0.5 ∗ 0.7 + 0.5 ∗ 0.7 = 0.7.

Suppose the investor hires Advisor B. The conditional probability of the state is

Pr(G|“must invest”) = 0.8,

P r(G|“invest”) = 0.7,

P r(G|“no opinion”) = 0.5,

P r(G|“not invest”) = 0.3,

P r(G|“never invest”) = 0.2.

If the signal is “must invest” or “invest,” then the investor will invest because

Pr(G|“must invest”)) = 0.8 > 0.5 and Pr(G|“invest”)) = 0.7 > 0.5. If the signal is “no

opinion,” then she is indifferent between investing or not because Pr(G|“no opinion”) =

0.5. She will not invest if the signal is “not invest” or “never invest” because Pr(G|“not invest” ) =

0.3 < 0.5 and Pr(G|“never invest” )) = 0.2 < 0.5.

Hence, when Advisor B’s signal is “must invest”, the expected utility is

u(signal=“must invest” )

= 0.8u(INVEST, G) + 0.2u(INVEST, B)

= 0.8 ∗ 1 + 0.2 ∗ 0 = 0.8.
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Similarly,

u(signal=“invest”) = 0.7,

u(signal=“no opinion”) = 0.5,

u(signal=“not invest”) = 0.7,

u(signal=“never invest”) = 0.8.

Hence, the expected utility of receiving a signal from Advisor B is

0.2u(signal=“must invest”) + 0.2u(signal=“invest”) + 0.2u(signal=“no opinion”)

+ 0.2u(signal=“not invest”) + 0.2u(signal=“never invest”)

= 0.2 ∗ 0.8 + 0.2 ∗ 0.7 + 0.2 ∗ 0.5 + 0.2 ∗ 0.7 + 0.2 ∗ 0.8 = 0.7.

A.1.2 Expected Utility

When the cost of the signal is c, the expected utility of each lottery is,

UEU(L1(c)) = 0.7u(100− c) + 0.3u(−c)

UEU(L2(c)) =
2

3
(0.8u(100− c) + 0.2u(−c)) +

1

3
(0.5u(100− c) + 0.5u(−c)),

UEU(L3(c)) =
1

2
(0.8u(100− c) + 0.2u(−c)) +

1

2
(0.6u(100− c) + 0.6u(−c)),

UEU(L4(c)) =
2

5
(0.8u(100− c) + 0.2u(−c)) +

2

5
(0.7u(100− c) + 0.3u(−c)))

+
1

5
(0.5u(100− c) + 0.5u(−c)).
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A.1.3 Recursive Smooth Ambiguity Preference

V1(c) ≥ V4(c) can be derived by the following procedure:

UKMM(L1(c)) = φ(U(0.7))

≥ 2

5
φ(U(0.8)) +

2

5
φ(U(0.7)) +

1

5
φ(U(0.5))

= UKMM(L4(c)).

Also, V3(c) ≥ V2(c):

UKMM(L3(c)) =
1

2
φ(U(0.8)) +

1

2
φ(U(0.6))

=
1

2
φ(U(0.8)) +

1

2
φ(

1

3
U(0.8) +

2

3
U(0.5))

≥ 1

2
φ(U(0.8)) +

1

6
φ(U(0.8)) +

1

3
φ(U(0.5))

≥ 2

3
φ(U(0.8)) +

1

3
φ(U(0.5))

= UKMM(L2(c)).

Similarly, V4(c) ≥ V2(c):

UKMM(L4(c)) =
2

5
φ(U(0.8)) +

2

5
φ(U(0.7)) +

1

5
φ(U(0.5))

=
2

5
φ(U(0.8)) +

2

5
φ(

2

3
U(0.8) +

1

3
U(0.5)) +

1

5
φ(U(0.5))

≥ 2

5
φ(U(0.8)) +

4

15
φ(U(0.8)) +

2

15
φ(U(0.5)) +

1

5
φ(U(0.5))

=
2

3
φ(U(0.8)) +

1

3
φ(U(0.5))

= UKMM(L2(c)).

A.2 Predictions with Signals

Table 16 shows subjects’ prediction decisions after the signal stage. The majority

of subjects followed the signal when their signal was informative (Box R or Box
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B). This suggests that the subjects comprehended the information structure of the

experiments. In both studies, the chi-square test and Fisher’s exact test indicate

that the null hypothesis of random prediction by subjects can be rejected. (p-values

< 0.001 for both studies.)

Table 16: Predictions with signals

Predictions Box R Box B Box G No Signal

Study 1 Red 16 (94.1%) 3 (15.8%) 12 (85.7%) 85 (65.9%)
Blue 1 (5.9%) 16 (84.2%) 2 (14.3%) 44 (34.1%)

Study 2 Red 37 (94.9%) 4 (11.1%) 8 (72.7%) N/A
Blue 2 (5.1%) 32 (88.9%) 3 (27.3%) N/A

Chi-square test p-value = 0.000

The purpose of Table 17 is to investigate whether the signal space size influences

the prediction decisions. The correct decision rate is defined as whether the subject’s

prediction aligns with the signal suggested after receiving Box R or Box B as a

signal. Results show that there is no correlation between the correct decision rate

and the signal space size. (Chi-square test p-value and Fisher’s exact test p-value are

approximately 0.513 and 0.672, respectively).

Table 17: Correct decision rate with each signal

Signal Received s1 s2 s3 s4 Total

Correct 9 (81.8%) 3 (100.0%) 11 (84.6%) 9 (100.0%) 32 (88.9%)
Incorrect 2 (18.2%) 0 (0.0%) 2 (15.4%) 0 (0.0%) 4 (11.1%)

Total 11 3 13 9 36

Chi-square test p-value = 0.513

A.3 Complexity Aversion

I did not find evidence for complexity aversion in lottery choice. According to Sonsino

et al. (2002), a lottery’s complexity is measured as the product of the number of
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rows and columns. Hence, in this environment, the number of boxes in the lottery

indicates the complexity of the lottery. The results show that when the signal is free,

the number of boxes — the size of the signal space — did not affect the values of

playing the lotteries.
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